Knowledge gaps in the risk assessment of hydrogen and carbon dioxide pipelines

Zoe Chaplin, Simon Gant*, Adam Bannister, Caron Maloney, Owen Stevens, Trevor Sexty, Martin Wayland and Sally Lloyd Davies Health and Safety Executive (HSE) Pipeline Technology Conference, Berlin, 8-11 May 2023

Research - HSE funded to provide evidence which underpins its policy and regulatory activities **Guidance** - freely available to help people comply with health and safety law

© Crown Copyright HSE 2023

RESEARCH AND GUIDANCE FROM

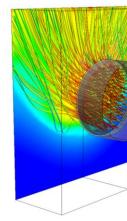
Overview

- Quick introduction to HSE
- Current and future UK support for Net Zero technologies
- Hydrogen
 - Properties, experience, knowledge gaps and future work
- \bullet CO₂ - Properties, experience, knowledge gaps and future work
- Conclusions

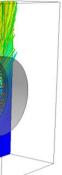
Introduction to HSE

HSE is the UK regulator for workplace health and safety

- Includes onshore/offshore pipelines, chemical/oil/gas infrastructure, offshore platforms etc.
- Activities: evidence gathering, policy development, consultation, regulation, incident investigation, enforcement
- HSE acts as an enabling regulator, supporting the introduction of new technologies _
- 2,400 total staff
- £230M (€260M) budget: 60% from Government, 40% from external income ____


HSE Science and Research Centre, Buxton, UK

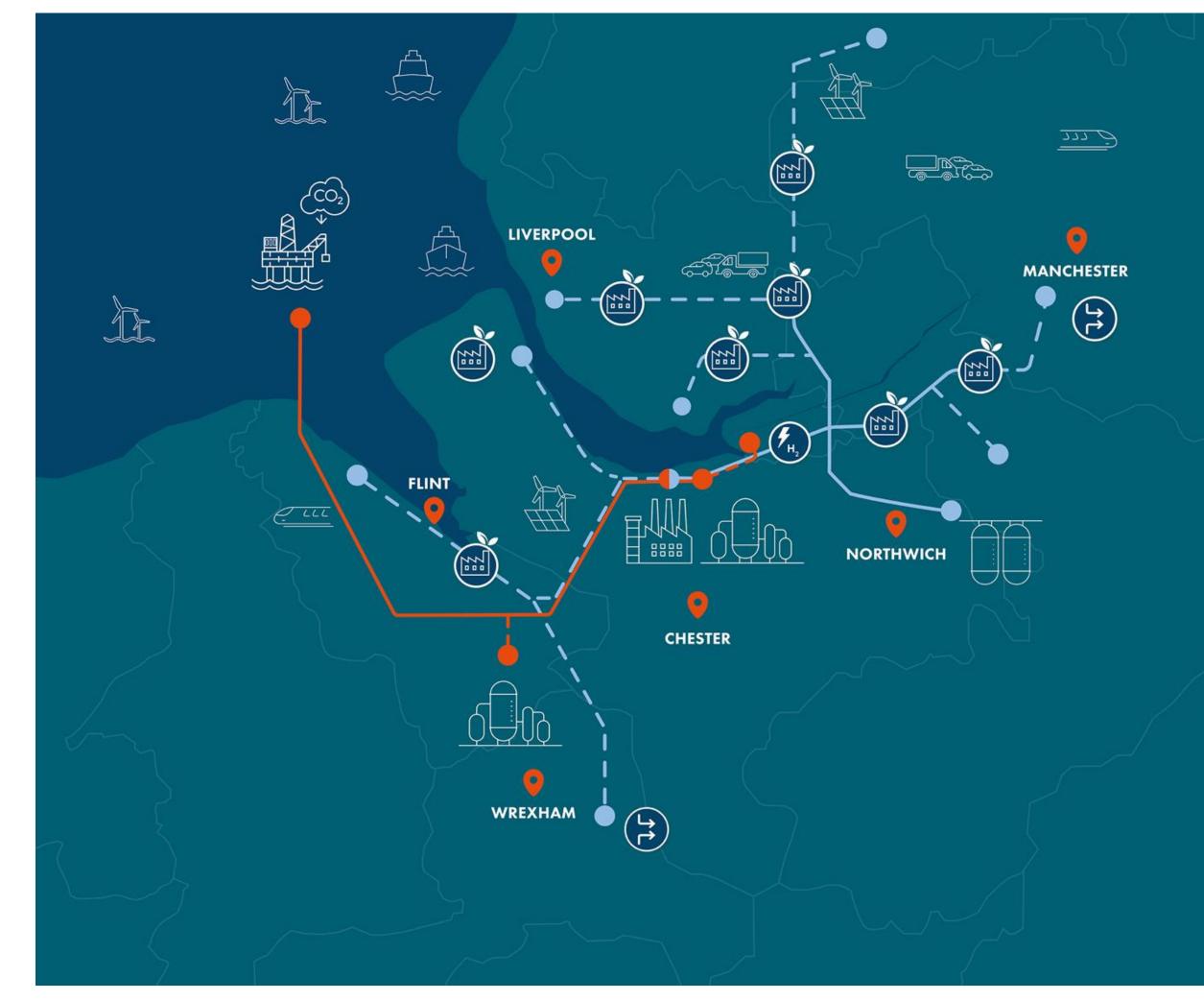
- 400 staff, 550 acre test site
- Scientific support to HSE and other Government departments "Shared research" or joint-industry projects co-funded by HSE Bespoke consultancy on a commercial basis
- ____



UK Government and Net Zero

UK Government support for Net Zero

- Net Zero 2050
 - UK Government announced Ten Point plan¹ in November 2020
- Growth of low-carbon hydrogen and CCUS based around
 - Regional hydrogen and CCUS industrial clusters
 - 2. Hydrogen for heating:
 - Government policy decision on hydrogen heating in 2026
 - 2023/4: Neighbourhood trial (300 properties, new PE distribution network, <u>https://www.h100fife.co.uk/</u>) 2025/6: Village trial (1,000 – 2,000 properties, repurposed gas distribution network)


 - By 2030: Town pilot (start of roll-out)
 - Targets of 5 GW of low carbon hydrogen production and 10 Mt carbon capture by 2030
- Other Net Zero ambitions
 - Offshore wind, nuclear, zero-emission vehicles/planes/ships, greener buildings, protecting environment, green finance and innovation

HyNet North West

https://hynet.co.uk

KEY

INITIAL PHASES OF CADENT'S H₂ PIPELINE FUTURE PHASES OF CADENT'S H₂ PIPELINE CO₂ TRANSPORTATION AND STORAGE SYSTEM FUTURE CO₂ PIPELINE CONNECTIONS

INDUSTRIAL CO2 CAPTURE

CO₂ STORAGE

LOW CARBON H₂ PRODUCTION

```
UNDERGROUND H<sub>2</sub> STORAGE
```

INDUSTRIAL H₂ USER

```
FLEXIBLE H<sub>2</sub> POWER GENERATION
```

```
CO<sub>2</sub> SHIPPING
```

 $\rm H_{2}$ blending for homes and business

H₂ FUELLING FOR TRANSPORT

H₂ FROM OFFSHORE WIND

H₂ FROM SOLAR AND WIND

KEY

Phase 2 shortlisted projects

PROJECTS IN TEESSIDE

INDUSTRIAL CARBON CAPTURE **CF Fertilisers Billingham Ammonia CCS** Norsea Carbon Capture **Redcar Energy Centre** Tees Valley Energy Recovery (TVERF) **Teesside Hydrogen CO2 Capture** Lighthouse Green Fuels STV 1+2 Energy from Waste Carbon Capture STV 3 Energy from Waste Carbon Capture Teesside Green Energy Park Limited

REDCAR MIDDLESBROUGH


DARLINGTON

UP TO 10 MTPA CO₂ CAPTURED

YORK

HYDROGEN bpH2Teesside H2NorthEast

POWER **Net Zero Teesside Power** Whitetail Clean Energy Alfanar CCGT Teesside

https://eastcoastcluster.co.uk

EAST CO2AST CLUSTER

111

145km

103km

SCUNTHORPE

HULL

SHEFFIELD

PROJECTS IN THE HUMBER

GRIMSBY

17+ MTPA CO₂ CAPTURED

BIOENERGY WITH CCS North Yorkshire Power Station

INDUSTRIAL CARBON CAPTURE Humber Zero - Phillips 66 Humber Refinery **Prax Lindsey Oil Refinery Carbon Capture** ZerCaL250

Altalto Immingham waste to jet fuel North Lincolnshire Green Energy Park Saint-Gobain Glass Carbon Capture

HYDROGEN

Hydrogen to Humber (H2H) Saltend Uniper Humber Hub Blue Project

POWER

Keadby 3 Power Station C.GEN Killingholme VPI Humber Zero

Hydrogen

RESEARCH AND GUIDANCE FROM HSE **GUIDANCE** FROM

Properties of hydrogen and CO ₂				
	Methane, CH ₄	Hydrogen, H ₂	Carbon Dioxide, CO ₂	
Molecular Mass (g/mol)	16.043	2.016	44	
Density (kg/m ³)	0.68	0.08	1.9	
Density relative to air	0.55	0.07	1.5	
Burning velocity (m/s)	0.37	3.2	N/A	
Lower flammable limit (% v/v)	4.4	4.0	N/A	
Upper flammable limit (% v/v)	17	77	N/A	
Lower detonation limit (% v/v)	6.3	18	N/A	
Upper detonation limit (% v/v)	13.5	59	N/A	
Minimum ignition energy (mJ)	0.26	0.01	N/A	

Hydrogen properties

- Molecular hydrogen can dissociate into atomic hydrogen on metal surfaces

 - Can enter the lattice structure leading to hydrogen embrittlement Lead to reduction in mechanical properties e.g. ductility, toughness, fatigue resistance
 - Limits what steels can be repurposed
- Ignites more readily over a wider range of concentrations Plus ignition is more likely to progress to detonation

Implications of hydrogen properties

- Potentially higher failure rates
- Higher ignition probabilities
- Possibility of explosions
- Not currently considered for natural gas in Great Britain Possibly higher risk overall for some pipelines

Hydrogen experience and experiments

- Lack of operational experience
 - ~2,200 km of H₂ pipelines in the USA
 - ~1,600 km in Europe
 - years in Great Britain alone
- Limited large-scale experimental data

Compares to ~22,000 km natural gas pipelines operating for over 40

- Two large-scale 60 bar H₂ pipeline experiments (Acton *et al.*, 2010)

NaturalHy 20% blend, 70 bar (Lowesmith and Hankinson, 2013)

Hydrogen knowledge gaps

Failure rates

- Research conducted to investigate effect of hydrogen on steel but: - Still some uncertainty over material response to long-term exposure at
- typical pipeline pressures

– Findings so far suggest:

- Steel strength not significantly affected but effect on elongation to failure is significant
- Fracture toughness reduced for most steel grades
- Some studies indicate that theoretical net fatigue life in the presence of hydrogen is 10-100 times less than in natural gas. Greatest effect on crack growth rate
- Effect of H_2 on resistance of steel to fast running fractures has not been evaluated
- Ultimately leads to uncertainty in failure rates

Hydrogen knowledge gaps

Fire and explosion

- Vapour Cloud Explosions (VCEs) not currently considered in Great Britain for natural gas pipelines, since the risk is dominated by fires
- Higher flame speed for hydrogen implies greater detonation potential
- VCEs observed in 60 bar hydrogen jet release experiments with delayed ignition (Jallais et al., 2018)
- Implication is that explosions may need to be modelled
- Is delayed ignition a credible event for transmission pipeline releases?
- What overpressures are generated in VCEs from pipeline releases?
- Is the overall VCE risk significant when compared to effects from fires?

Hydrogen knowledge gaps

Ignition probabilities

- Lower MIE and wider flammable range mean that hydrogen is easier to ignite than natural gas
- HSE previously reviewed ignition probabilities, but not specifically for hydrogen
- No specific probabilities for hydrogen identified previously
 - Currently reviewing previous work to see if any suitable ignition probabilities have been identified in the interim
- Always an area of uncertainty

Ongoing UK Hydrogen Studies

Failure rates

- HyDeploy fracture toughness and fatigue testing FutureGrid – testing in full-scale repurposed assets
- Fire and explosion
 - FutureGrid testing of explosion potential
- Ignition probabilities
 - HSE reviewing available information
 - Indications from recent and proposed experiments?

RESEARCH AND GUIDANCE FROM HSE

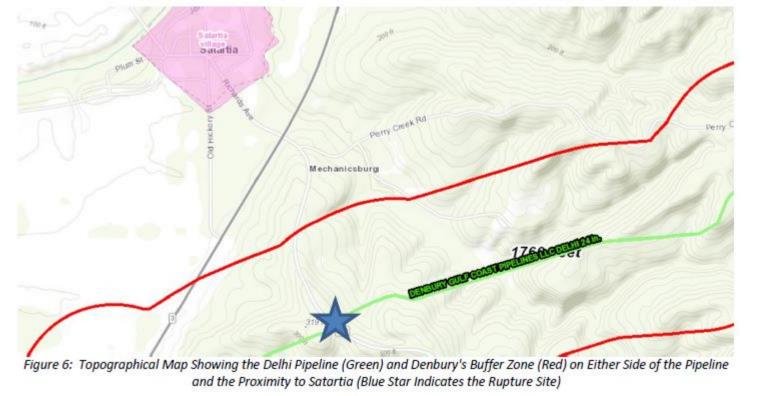
Properties of hydrogen and CO ₂				
	Methane, CH ₄	Hydrogen, H ₂	Carbon Dioxide, CO ₂	
Molecular Mass (g/mol)	16.043	2.016	44	
Density (kg/m ³)	0.68	0.08	1.9	
Density relative to air	0.55	0.07	1.5	
Burning velocity (m/s)	0.37	3.2	N/A	
Lower flammable limit (% v/v)	4.4	4.0	N/A	
Upper flammable limit (% v/v)	17	77	N/A	
Lower detonation limit (% v/v)	6.3	18	N/A	
Upper detonation limit (% v/v)	13.5	59	N/A	
Minimum ignition energy (mJ)	0.26	0.01	N/A	

CO₂ properties and issues

- Toxic rather than flammable
- Denser than air
 - CO₂ likely to slump to the ground and disperse close to the ground, collecting in low-lying areas, valleys etc.
- Impurities in the CO₂ can significantly affect steel corrosion rates
- Potential for long-running fractures in dense-phase CO₂ pipelines

Implications of CO₂ properties

- Risks can extend a significant distance from the pipeline
- Terrain becomes important for dispersion Materials effects could increase failure rates
 - Corrosion rates
- Third-party activity rates if corrosion has affected wall thickness Long-running fractures could lead to changes in hole size
- distributions
 - More likely to get larger holes/ruptures?



Demonstration of importance of terrain: Satartia

- Failure of Denbury Gulf Coast Pipelines 24-inch CO₂ pipeline near Satartia, Mississippi due to landslide
- Dense CO₂ cloud rolled downhill and engulfed Satartia village, a mile away
- Approximately 200 people evacuated and 45 required hospital treatment
- Communication issues: local emergency responders were not informed by pipeline operator of the rupture and release of CO_2
- Denbury's risk assessment did not identify that a release could affect the nearby village of Satartia

Image sources: Yazoo County Emergency Management Agency/Rory Doyle for HuffPost and PHMSA

- https://www.huffingtonpost.co.uk/entry/gassing-satartia-mississippi-co2pipeline_n_60ddea9fe4b0ddef8b0ddc8f
- https://www.phmsa.dot.gov/sites/phmsa.dot.gov/files/2022-05/Failure%20Investigation%20Report%20-%20Denbury%20Gulf%20Coast%20Pipeline.pdf

CO₂ experience and experiments

- Lack of operational experience
 - ~6,000 km of CO₂ pipelines globally
 - Majority in the USA and Canada for Enhanced Oil Recovery (EOR)
 - Impurities in EOR CO₂ streams may differ from CCS impurities, so possible that EOR experience is of limited use
- Limited experimental data at large scale
 - DNV 8" dense phase pipeline experiment at Spadeadam
 - International projects
 - CO2PipeHaz
 - MATTRAN
 - COOLTRANS

- COSHER
- CO2PIPETRANS

Failure rates

- Corrosion highly dependent on presence of free water • If water present, other impurities (NOx, SOx) can increase likelihood of
- corrosion
 - What to do in case of process upset (e.g. CO_2 composition outside specification)?
- Fracture propagation
 - Brittle fractures due to rapid cooling of CO₂ on decompression that changes fracture behaviour of steel from ductile to brittle
 - Long-running ductile fractures for supercritical CO₂ due to net decompression speed of the fluid < fracture propagation speed along the pipe

Fracture arrest

- Difficult to determine requirements, particularly if impurities are present
- More work done on dense-phase than gaseous; therefore less certainty in fracture arrest requirements for gaseous CO₂
- Existing methods to predict crack arrest in natural gas pipelines (Battelle Two Curve Method) are not conservative for dense-phase CO₂
- Fracture tests
 - Uncertainty around suitability of Charpy impact test and Drop-Weight Tear Test (DWTT) to determine fracture resistance

Fracture arrest

Recent publications on running ductile fractures:

Revision of guidance in DNV-RP-F104 and ISO 27913?

• Skarsvåg et al. (2023) "Towards an engineering tool for the prediction of running ductile fractures in CO₂ pipelines" Process Safety and Environmental Protection 171 (2023) 667–679. https://doi.org/10.1016/j.psep.2023.01.054

• Cosham et al. (2022) "The decompressed stress level in dense phase carbon dioxide full-scale fracture propagation tests". Proceedings of the 14th International Pipeline Conference IPC2022, 26-30 Sept 2022, Calgary, Canada

Dry-ice formation

- Dry-ice possible for both gaseous and dense-phase releases Reported to have blocked pipeline values in their open position – Could dry-ice block parts of the pipeline and/or valves?

Terrain effects

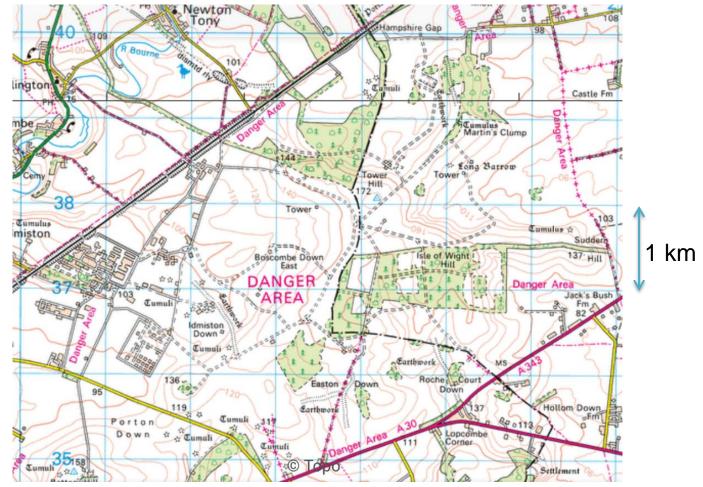
- CO₂ cloud denser than air so affected by gravity
- CO₂ cloud will tend to follow local terrain, accumulating in dips and hollows

Terrain effects (continued)

- Satartia CO₂ pipeline incident demonstrated that toxic hazard could extend large distances from a pipeline (~ 1 mile?)
- Fast-running dispersion models (e.g., Phast) unable to simulate effects of sloping terrain
- computer run times: impractical for assessing risks of long pipelines validate models for dense-gas dispersion in sloping terrain. Can we trust
- CFD models may (in principle) simulate terrain, but require long For both CFD and fast dispersion models: lack of experimental data to the model predictions?

Potential future Joint-Industry Project on CO₂ dispersion

- Aims of collaborative JIP:
 - to pipeline releases



© Crown Copyright, photos courtesy of DSTL, Porton Down

- Conduct programme of large-scale CO_2 releases on sloping terrain, relevant

 Produce data to validate dispersion models and crater source models Develop fast-running dispersion models suitable for pipeline risk assessment Test site: Porton Down (UK Defence, Science and Technology Laboratory)

© Crown copyright and database rights 2023, Ordnance Survey 100021025

Conclusions

RESEARCH AND Guidance From

Conclusions

- Knowledge gaps exist for both hydrogen and CO₂
 Therefore: uncertainties in risk predictions for pipelines
- Limited operational experience to fill the gaps
- Issues are international: benefits in working collaboratively
- Some work underway to address the gaps
- We would be interested to hear about any work aimed at filling these gaps
- Conservative approaches necessary in the short term?
- Please contact us if you are interested in participating in the proposed JIP on dispersion of CO₂ in complex terrain

Thank you for listening

- Contact: <u>zoe.chaplin@hse.gov.uk</u>, <u>simon.gant@hse.gov.uk</u>
- policy

The contents of this presentation, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE

- Acton, M.R., Allason, D., Creitz, L.W. and Lowesmith, B.J. (2010) Large scale Canada. https://doi.org/10.1115/IPC2010-31391

experiments to study hydrogen pipeline fires. Proceedings of the 8th International Pipeline Conference, IPC2010, September 27 – October 1, 2010, Calgary, Alberta,

Ahmad et al. (2015) COSHER joint industry project: Large scale pipeline rupture tests to study CO₂ release and dispersion. <u>https://doi.org/10.1016/j.jjggc.2015.04.001</u>

Cooper R. and Barnett J. (2014) Pipelines for transporting CO_2 in the UK, Energy Procedia, 63, p2412-2431. Available from: https://doi.org/10.1016/j.egypro.2014.11.264

- 64456
- (IPC2022), Calgary, Alberta, Canada, 26-30 September 2022
- Southport, UK, 12-15 November 2012

Cosham A., Jones D.G., Armstrong K., Allason D. and Barnett J. (2016) Analysis of a dense phase carbon dioxide full-scale fracture propagation test in 24-inch diameter pipeline, ASME 11th International Pipeline Conference (IPC2016), Volume 3, Calgary, Alberta, Canada, p26-30, 2016. Available from: http://dx.doi.org/10.1115/IPC2016-

Cosham, A., Michal, G., Østby, E. and Barnett, J. (2022) The decompressed stress level in dense phase carbon dioxide full-scale fracture propagation tests, Paper IPC2022-86855, Proceedings of the 2022 14th International Pipeline Conference

Dixon, C.M., Gant, S.E., Obiorah, C. and Bilio, M. (2012). Validation of dispersion models for high pressure carbon dioxide releases IChemE Hazards XXIII Conference,

- DNV (2021) Design and operation of carbon dioxide pipelines, Recommended Practice, DNV Report DNV-RP-F104. Available from: <u>https://www.dnv.com/oilgas/download/dnv-rp-f104-design-and-operation-of-carbon-dioxide-pipelines.html</u> by subscription only
- ISO (2016) Carbon dioxide capture, transportation and geological storage Pipeline transportation systems, ISO 27913:2016. Available from: <u>https://www.iso.org/standard/64235.html</u>
- Jallais S., Vyazmina E., Miller D. and Thomas J.K. (2018) Hydrogen jet vapor cloud explosion: a model for predicting blast size and application to risk assessment, Process Safety Progress 37(3), p397-410 <u>https://doi.org/10.1002/prs.11965</u>

- 111. https://doi.org/10.1016/j.psep.2012.03.004
- p667–679. <u>https://doi.org/10.1016/j.psep.2023.01.054</u>

Lowesmith, B.J. and Hankinson, G. (2013) Large scale experiments to study fires following the rupture of high pressure pipelines conveying natural gas and natural gas/hydrogen mixtures. Process Safety and Environmental Protection, Vol. 91, p101-

MATTRAN https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/G061955/1

Skarsvåg et al. (2023) Towards an engineering tool for the prediction of running ductile fractures in CO₂ pipelines, Process Safety and Environmental Protection, Vol. 171,

